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Abstract
Payments for Ecosystem Services (PES) are a widely used approach to incentivize

conservation efforts such as avoided deforestation. Although PES effectiveness has
received significant scholarly attention, whether PES design modifications can im-
prove program outcomes is less explored. We present findings from a randomized
trial in Mexico that tested whether a PES contract that requires enrollees to enroll
all of their forest is more effective than the traditional PES contract that allows them
to exercise choice. The modification’s aim is to prevent landowners from enrolling
only parcels they planned to conserve anyway while leaving aside other parcels to
deforest. We find that the full-enrollment treatment significantly reduces deforesta-
tion compared to the traditional contract. This extra conservation occurs despite
the full-enrollment provision reducing the compliance rate due to its more stringent
requirements. The full-enrollment treatment quadrupled cost-effectiveness, high-
lighting the potential to substantially improve the efficacy of conservation payments
through simple contract modifications.
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1 Introduction

Human-driven tropical deforestation is a significant source of greenhouse gas emissions

[1] and also contributes to biodiversity loss [2–5], as tropical forests contain at least

two-thirds of the world’s species diversity [6]. Tropical deforestation often occurs in

high-poverty areas with limited government capacity to enforce bans. Consequently,

Payments for Ecosystem Services (PES) programs have emerged as a promising policy

to achieve forest conservation without exacerbating poverty [7, 8]. PES programs offer

cash or in-kind incentives to participating landowners or communities, with payments

conditional on specific natural resources management activities, such as forest protection

[9, 10]. A recent review recorded 550 active PES programs globally with around US$40

billion in annual transactions [11].

Whether and when PES programs are effective in achieving desired outcomes has

received considerable scholarly attention. The consensus is that the ’essential precon-

ditions’ are that participants face low opportunity and transaction costs to conserve,

which makes it possible to increase their conservation activity with feasible payment

levels [12]. Beyond these basics, program performance is said to depend on contextual,

implementation, and program design factors [7, 13]. Regarding program design, the

relation between design features and program outcomes has been discussed conceptu-

ally [13–15] and empirically [7, 16], and prior studies have used lab-in-the-field or framed

field experiments to examine the effects of PES design on outcomes such as participation

[17], equity perceptions [18], and collective action [19, 20]. While randomized controlled

trials (RCTs) that assess environmental outcomes of actual PES schemes have emerged

in recent years, these have mostly evaluated program effects against a no-program sce-

nario [21–27], as opposed to isolating the effects of design variations. One exception is a

study of PES to reduce agricultural burning in India that experimentally varied payment
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levels, conditionality, and upfront versus ex-post payments [28].

We test a design variation aimed at reducing inframarginal payments in PES for for-

est protection. PES effectiveness depends crucially on the extent to which payments are

inframarginal, or made for protecting forest that would have been protected even with-

out the financial incentive [9]. Locating a program in a landscape with low deforestation

risk can exacerbate inframarginality [7]. We focus on another source of inframarginal-

ity: participants’ strategic selection of which land to enroll [29]. If eligible landowners

systematically enroll the subset of their lands with the lowest likelihood of degradation,

many of the payments will be for conservation that would have happened anyway.

Reducing inframarginal payments is especially important because the policy objective

for PES is not just effectiveness but cost-effectiveness, e.g., additional forest cover per

dollar of program expenditures. Inframarginal payments add to program costs without

generating benefits so depress cost-effectiveness. Improving cost-effectiveness is critical

given under-funding of conservation initiatives [30] and a recent trend of PES program

downsizing or discontinuation in some contexts [31–33], including Mexico, our study’s

setting.

In this article, we conduct the first randomized trial to test the impacts of requiring

PES participants to enroll all of their eligible forest landholdings (’full enrollment’). The

primary outcome is avoided deforestation, measured using satellite imagery. The study

takes place in Selva Lacandona, Chiapas, Mexico.

We compare the full enrollment “treatment” group to a “control” group offered a

PES contract that gives participants the flexibility to enroll some lands for conservation

while leaving other lands outside the program (‘standard PES’ or ‘partial enrollment’).

Since payments are conditional on maintaining only the enrolled parcels, under standard

PES, participants can be in compliance yet continue their business-as-usual deforestation

by clearing non-enrolled lands. The partial enrollment provision is used in Mexico’s
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national Pago Por Servicios Ambientales (PSA) program and other major PES programs

worldwide such as the Conservation Reserve Program in the US [34]. Our standard

contract closely follows PSA, but with a one-year rather than five-year duration.

To see why full enrollment might be a valuable modification, suppose the owner of

20 forest hectares wants to clear 4 hectares during the contract period. With a standard

PES scheme, she can enroll the other 16 hectares, keep them intact, deforest the left-out

4 hectares, and receive payment, despite not having reduced her deforestation at all (i.e.,

no additionality). She is paid for 16 hectares of conservation, but the payments are en-

tirely inframarginal. In contrast, a full-enrollment scheme offers her the choice of not

participating or enrolling all 20 hectares she owns. Now she cannot receive payment

without reducing her deforestation. If she complies, she will generate more additional

forest cover under full enrollment (4 hectares versus 0 hectares). However, another im-

plication is that, due to the more demanding contract terms, full enrollment reduces the

likelihood that she chooses to comply. Combining these two predicted effects, the net

effect on forest cover is ambiguous, though full enrollment should outperform standard

PES on forest cover per dollar spent, or cost-effectiveness. We test all of these predictions.

Our study is the first to empirically compare full enrollment against standard, partial-

enrollment PES. We build on a previous study that evaluated the impact of full-enrollment

PES in Uganda relative to a no-PES control group [26]. That study found less infra-

marginality and more cost-effectiveness than is typical for PES. Based on that result, we

hypothesized that requiring full enrollment among PES participants in Mexico would

increase cost-effectiveness and likely the amount of forest preserved.
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2 Study Context

Mexico has one of the oldest and largest government-funded PES programs worldwide,

in terms of both area enrolled and public spending [35]. Since 2003, it has been im-

plemented nationally by the national forest commission (Conafor) and has focused on

preventing land cover change, particularly deforestation, in critical ecosystems [36, 37].

Mexico’s PES (or PSA in Spanish) provided annual payments of MX$1,000 (approx-

imately US$50) per hectare in the study area in 2021. The conditions for payment

are maintaining forest cover and performing forest management activities on enrolled

lands. Program compliance is monitored through periodic field visits and remote sens-

ing. Most applications are made at the ejido (community) level, bundling individual and

sometimes collectively-managed landholdings [16].1 Local implementation is facilitated

by Conafor-appointed intermediaries who help communities prepare applications and

oversee program activities. Our implementing partner, the non-profit Natura Mexicana,

is a Conafor intermediary.

Many but not all studies find that PSA has been effective at reducing deforestation

[36, 38–40]. However, PSA’s funding has declined. From 2015-2019, Conafor’s annual

budget was cut by 70% in real terms [41]. Although demand for PSA has exceeded

available funding since the program’s outset [37], the shrinking budget has recently

made access considerably harder for interested communities [16].

We study five ejidos in Marqués de Comillas (MdC) municipality in Chiapas state

(see Figure 1). MdC is an agricultural frontier region within Selva Lacandona, which is

the largest high-canopy tropical rainforest remnant in Mexico and a biodiversity hotspot

[42], but also a region of high deforestation for cattle ranching and agricultural pro-

duction [43]. Landholders in MdC manage individual endowments of 30-50 hectares,

1An ejido is a legally recognized communal land governance entity that comprises plots that are indi-
vidually managed by landholders and common-resource areas that are managed collectively.
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Figure 1: Map of study location

Notes: The top panel depicts the municipality of Marques de Comillas (MdC), with the five ejidos in the
study shaded in green. The shading in the bottom panel indicates the location of MdC within Chiapas
and the location of Chiapas within Mexico.

which they allocate to a combination of pastures, agricultural fields, and forest reserves.

Many households face economic poverty [44]. The five communities have previously

participated in several PSA contracts since the late 2000s.

Previous research in MdC finds that PSA has reduced deforestation on enrolled lands
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[39, 40] and yielded socio-economic co-benefits [44, 45]. However, prior research also

shows that most landholders enroll only a fraction of their eligible property to PSA, and

deforestation rates are high on non-enrolled lands, which participants consider more

productive for ranching and agriculture [29].

We recruited landholders from the five ejidos who had applied to PSA in 2021 with

individual landholdings but were rejected due to Conafor having insufficient funding.2

Study participants (n=63) completed a baseline survey in April-May 2021 and had their

entire individual landholding mapped. In June-July 2021, Natura Mexicana held meet-

ings in each community and offered each study participant one of two PES contracts: (a)

a contract to enroll the same forested lands that she had previously submitted to PSA

in 2021 (standard PES, or control group) or (b) a contract that required her to enroll all

of her forested lands (full enrollment, or treatment group). We determined participants’

contract type based on a random number generator in Stata, with the randomization

stratified by ejido. There is no “pure control” group that was not offered PES; the study

is designed to measure the relative performance of full enrollment, compared to standard

PES.

To determine the enrolled area for the control group, we use the shapefiles that ejidos

submitted with their 2021 PSA application indicating the forest parcels they wanted to

enroll. We also have this information for the treatment group, so we know the parcels

they would have enrolled had they been offered standard PES. Similarly, because we

mapped all of the forest owned by a landholder, we have the polygons for forest area

left out of the PES contract for the control group. Thus, we can compare the treatment

and control groups’ deforestation rate overall for their forest and also separately for the

parcels they would have included versus excluded if given the partial-enrollment option.

2Their applications met Conafor’s legal, technical, environmental, and economic requirements for ac-
ceptance. Among applications that meet the requirements, Conafor prioritizes based on additional criteria
such as being in an area at high risk of deforestation [16].
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On average, landowners left out 49% of their forest area from their PSA application.

At the community meeting, participants chose whether to enroll (sign the contract);

the contract took effect immediately. The control and treatment contracts were identical

except for the land enrollment requirement. The payment rate was set at the level used

by PSA, MX$1,000 per year per hectare of forest, and contract terms were otherwise

similar to PSA except for the shorter contract duration. Payment disbursal at the end of

the one-year contract was conditional on maintaining forest cover on all of the enrolled

land, which was determined based on satellite imagery and, if needed, in-person veri-

fication. For the satellite verification, we developed a random-forest model to analyze

high-resolution Planet imagery, classifying pixels as forested or not. We use the same

model to estimate the treatment impacts reported in the next section. Our implementing

partners, Natura Mexicana and Innovations for Poverty Action, disbursed payment to

those who complied. We then administered an endline survey to study participants in

August 2022.

3 Results

3.1 Treatment effect on deforestation

Table 1 presents the effects on deforestation of the full enrollment contract (treatment),

relative to standard PES. Specifically, we examine how much of the forest that existed at

baseline was deforested over the PES contract period. The outcome is a binary variable

that equals 1 if the pixel is non-forest at the end of the study period.3

We first analyze deforestation within each participant’s entire forest area, enrolled

or not (column 1). In the standard contract arm, 14% of the forest area was deforested

3The baseline month is May 2021 (because the first contracts started in June 2021), and the endline
month is August 2022 (because the last contracts ended in July 2022).
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Table 1: Treatment effects on deforestation

Deforestation May 2021 - August 2022

Property area Conafor area Non-Conafor
area

(1) (2) (3)

Treat -0.054 0.001 -0.135
(0.021)∗∗ (0.006) (0.036)∗∗∗

Control mean 0.140 0.014 0.288
N 777902 380801 397101

Notes: Each observation is a 4.59 m by 4.56 m pixel within the landholding of a study participant, that
was forest-covered at baseline. All regressions include ejido fixed effects. Robust standard errors are in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

in a year. The treatment group deforests 5.4 percentage points (pp) less (p-value=0.01),

equivalent to 39% less deforestation.

Column 2 restricts the sample to forest pixels the individuals were planning to enroll

in Conafor’s PSA (“Conafor area”). This area is covered by our PES contract for both

treatment and control groups. The number of observations (pixels) in column 2 is 49% of

the observations in column 1, indicating the proportion of their forest that landowners

enrolled when given choice. For this land, the deforestation rate is relatively low (1.4%)

in the control group and nearly identical in the treatment group.

We next examine the forest that the participant had not wanted to enroll in PSA

(column 3).4 The control group was in compliance with their contract regardless of

what they did on these parcels, while the treatment group had to conserve them to be in

compliance. Deforestation is very high in the control group for these parcels, at 28.8%. In

the treatment group, the deforestation rate is 13.5 pp lower (p-value=0.000), equivalent

to 47% less deforestation on these parcels.

As an alternative analysis, Table 2 presents the results at the individual level instead

of pixel level. Odd columns present average treatment effects, while even columns study

4Four people included all of their forest in their 2021 PSA application so have no non-Conafor area.
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Table 2: Treatment effects at the individual level, including heterogeneity by baseline
forest area

Deforestation May 2021 - August 2022

Property area Conafor area Non-Conafor area

(1) (2) (3) (4) (5) (6)

Treat -0.025 0.032 0.009 0.014 -0.112 -0.058
(0.021) (0.032) (0.008) (0.012) (0.041)∗∗∗ (0.068)

Treat × Above-median forest area at baseline -0.113 -0.009 -0.101
(0.045)∗∗ (0.017) (0.080)

Above-median forest area at baseline 0.054 0.004 0.029
(0.031)∗ (0.008) (0.059)

Control mean 0.127 0.127 0.016 0.016 0.287 0.287
p-val: Treat + Treat × Above-median forest

area at baseline = 0
.006 .675 .001

N 63 63 63 63 63 63

Notes: Each observation is a landowner. All regressions include ejido fixed effects. Robust standard errors
are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

heterogeneity by the amount of forest at baseline. Column 1 shows that, weighting each

landowner equally, there is no significant difference in deforestation between the con-

tracts. This pattern can be reconciled with the result in Table 1 — less deforestation with

the treatment contract on total land — if the treatment reduced deforestation more for

owners of large amounts of forest. Column 2 shows that this heterogeneity indeed is

present. The treatment reduces deforestation among those who own above-median for-

est (by 8.1 pp on net, p-value=0.006), but not those with below-median forest. Columns

3 to 6 show results for the Conafor and non-Conafor parcels, and, as expected, the im-

proved performance of the treatment contract is because of much lower deforestation in

the non-Conafor area.
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3.2 Treatment effect on compliance

In the control group, 30 out of 32 individuals (94%) complied. In the treatment group,

22 out of 31 (71%) complied.5 The lower compliance rate in the treatment group (p-

value=0.02) is consistent with the stricter requirements of the full-enrollment contract.

Despite the lower compliance rate, the treatment reduced total deforestation because

the averted deforestation per person who did comply was sufficiently larger under the

treatment.

The small sample size prevents precise conclusions about the characteristics associ-

ated with non-compliance, but as shown in Table A.1, non-compliers are more likely to

be male and less likely to have participated in the government PSA program, and they

deforested at a higher rate in the year prior to our study.

3.3 Cost-effectiveness

Our finding that the treatment reduced deforestation by 5.4% of total forest area relative

to standard PES (Table 1, column 1), is one input into a cost-effectiveness calculation.

We also need the absolute amount of avoided deforestation under each contract type.

For this, we need to make an assumption about how much averted deforestation was

caused by standard PES relative to a scenario with no PES. Based on the previous lit-

erature, we assume standard PES led to 2.2% less deforestation per year on enrolled

land, which implies 1.1% less deforestation on total land [39]. This assumes no impacts

on non-enrolled land, which is a generous assumption for standard PES: deforestation

might have shifted from enrolled to non-enrolled land. This assumption choice yields a

conservative estimate of the gains in cost-effectiveness from our treatment.

Full-enrollment PES therefore prevented 6.5% of forest area being lost relative to

5One landowner in each arm chose not to enroll in the PES program. The other non-compliers enrolled
but deforested some of their enrolled land.
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no PES (1.1% + 5.4%). This implies 62.9 hectares of avoided deforestation with full-

enrollment PES and 7.3 hectares with standard PES.

The treatment increased hectares of forest enrolled and payments. In the standard

PES group, we paid in total MX$313,400 and in the treatment group, MX$591,000. This

implies MX$42,932 (US$2,143) per hectare of avoided deforestation for standard PES

versus MX$9,396 (US$469) for full-enrollment PES.6 Thus, our treatment increased PES

cost-effectiveness by a factor of 4.6.

To quantify the carbon benefits of full-enrollment PES, we use prior estimates that

the Lacandona forest stores 550 metric tons of CO2 per hectare [46]. The environmental

benefits of a short-term PES program derive from delaying deforestation. We assume that

after the contract period ends, landowners revert to their business-as-usual deforestation:

they do not continue with their higher conservation rate, but they also do not deforest

at a higher catch-up rate [26]. Using a 3% discount rate, we can express the delayed

emissions in terms of the equivalent permanently avoided emissions. This calculation

yields that full-enrollment PES’s cost is US$4.72 per metric ton of permanently averted

CO2.

4 Discussion

Because tropical deforestation remains high – contributing to climate change and bio-

diversity loss – while conservation funding is limited, there is a pressing need for de-

sign improvements in conservation policies [7]. Our findings from an experimental PES

intervention in Mexico indicate that simple contract design changes can enhance the

cost-effectiveness of conservation payments.

6We use the mid-July 2021 exchange rate of MX$20.036 = US$1. Administrative costs are low relative
to payments; they reduce the relative cost-effectiveness of the treatment because they are also incurred for
non-compliers.
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We found that introducing a requirement for PES participants to enroll all their for-

est led to 5.4 percentage points less annual deforestation than what is achieved with

a standard PES contract that allows for strategic land selection, or 39% less deforesta-

tion. We confirm that the extra conservation is mainly on parcels that individuals were

not planning to enroll if given the choice. The standard PES contract has been shown

to be effective in the study area [39]. Our improved contract design greatly amplifies

additionality. Cost-effectiveness with our treatment is quadrupled.

Our results confirm our hypothesis that inframarginality can be widespread when

PES design allows strategic land enrollment by participants. While poor spatial targeting

of which communities or individuals are eligible has been widely recognized in the

PES literature as a key factor hampering effectiveness [7, 9], strategic land enrollment

remains less studied despite its documented prevalence in some contexts [29] and likely

prevalence in others.

Importantly, the improvement in PES performance did not require a sophisticated

market mechanism to elicit the landowner’s private information about their opportunity

costs and planned land decisions [47, 48] or a prediction model to identify where addi-

tionality and ecological benefits would likely be high [49–51], as have been suggested to

address the spatial targeting problem. Our improvement came from amending a clause

in the contract and essentially closing a loophole that allowed landholders to continue

business-as-usual deforestation but receive PES payments.

Moreover, we document a high rate of landowner satisfaction with the program:

100% of endline respondents in the full enrollment arm and 90% in the standard PES arm

expressed satisfaction and interest in participating in a program like ours again. If we

assume those who did not complete the endline survey were unsatisfied, the satisfaction

rates were 84% for both full-enrollment and standard PES — still quite high and, notably,

as high among those offered the full-enrollment contract.
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Yet our results also highlight the potential trade-offs when tweaking policy design.

Adding a more stringent land enrollment requirement generated more additional forest

cover among those who complied but also reduced the compliance rate. Theoretically,

the net effect of our design change on total averted deforestation could have been posi-

tive or negative, depending on the magnitude of each effect. We attribute the observed

net positive effect to how the design change interacted with contextual and implemen-

tation factors [13], namely i) high deforestation rates driven by cattle expansion in the

region, which created significant scope for reducing land conversion; ii) large land en-

dowments, leading to widespread ‘partial enrollment’ among participants; iii) a high

degree of trust and local legitimacy towards our procedures, as reflected by participant

satisfaction. These findings suggest that careful attention should be paid to understand-

ing the local socio-ecological context and behavioral drivers [14, 15] when designing

policy innovations. Such understanding can inform which potential innovations to test

and how to set up adequate institutional processes to implement changes.

We note some limitations of our study. First, our results are based on a small sample

and an intervention duration of one year, which restricts assessment of whether the

impacts could be sustained at larger scales or for a longer duration. Second, we focused

on effects on deforestation; our study does not analyze socio-economic effects. Third,

the study region has some specific preconditions (e.g., large land endowments) that may

not be representative of other contexts in Mexico or elsewhere. We believe our results

are particularly relevant in tropical frontier regions where conservation programs face

important challenges in curbing rapid land conversion from cattle expansion [5].

Future studies could test our design modification in other contexts or test other PES

innovations. We encourage more A/B testing like this, particularly using random as-

signment because of its proven ability to isolate and quantify the effect of specific design

or implementation features [28]. There are disadvantages of not having a “pure control”
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group, but A/B testing has the advantage that everyone is offered the program, which

diminishes concerns about some study participants being left out [52]. By identifying

how key design innovations can make conservation payments more cost-effective, we

could help build stronger support for PES at a time when some programs face defund-

ing [31–33], as well as provide insight on how to increase the impact of nature-based

carbon offsets, whose efficacy has been called into question [53].
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5 Methods

5.1 Sample selection

We recruited 63 landholders from five ejidos who applied to Conafor’s PSA (January

2021) with individual landholdings but were rejected (April 2021) due to insufficient

funding. They were among the 134 rejected applicants to PSA in 2021 from these ejidos.

Due to project budget constraints, we excluded from eligibility the 44 with the largest

amount of lands. From the remaining 90 eligible landholders, 27 either opted out of

participating in the study or were unreachable during baseline data collection.

5.2 Survey data collection

Innovations for Poverty Action collected baseline data in May-June 2021 and endline data

in August 2022. At baseline, enumerators walked around the participants’ plots to record

the exact polygons for the deforestation analysis using GPS software on smartphones. At

endline, we successfully resurveyed 58 of the 63 study participants, though the response

rate was lower on several questions, such as income. We use the baseline data to ensure

the study arms are balanced, and we use the endline survey for supplementary analysis

of impacts on satisfaction with the modified PES program.

5.3 Baseline balance between study arms

Table 3 presents summary statistics for the study sample. Each row presents the mean

and then the standard deviation in parentheses. Column 1 presents statistics for the

whole sample, column 2 for the treatment group (full enrollment) and column 3 for

the control group (partial enrollment). Column 4 reports the standardized difference

between the two groups (difference divided by the pooled standard deviation). 62% of
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study participants are male, average education is 7 years, and average household expen-

ditures was MX$3,500 in the previous month (around US$175). 61% had been enrolled

in Conafor’s PSA in the past. Study participants, on average, own 42 hectares of land of

which 19 are forest.

Table 3: Balance in Baseline

Variable Total Treatment Control Standardized
diff

(1) (2) (3) (4)

Male 0.619
(0.490)

0.645
(0.486)

0.594
(0.499) 0.104

Years of school completed 7.113
(4.086)

6.710
(4.391)

7.516
(3.785) -0.197

Household expenditure in last month (Ln) 8.159
(0.757)

8.097
(0.797)

8.217
(0.726) -0.159

Has been or is enrolled in a PSA program 0.613
(0.491)

0.645
(0.486)

0.581
(0.502) 0.130

Land area across all plots (hectares) 42.480
(20.815)

46.932
(21.056)

38.166
(19.961) 0.421

Distance to road (minutes) 15.590
(14.675)

16.245
(15.499)

14.956
(14.051) 0.088

Previous def. % Conafor area 0.007
(0.018)

0.009
(0.022)

0.005
(0.014) 0.222

Previous def. % Non- Conafor area 0.219
(0.195)

0.181
(0.186)

0.257
(0.198) -0.390

Primary forest area total across all plots (hectares) 19.063
(14.061)

22.790
(15.658)

15.453
(11.437) 0.522

Number of observations 63 31 32

Notes: for each variable, each row presents the mean and below the standard deviation in parenthesis.
Column 1 for the whole sample, column 2 for the treatment group and column 3 for the control group.
Column 4 presents the standardized difference.

The only statistically significant difference between study arms is for previous-year

deforestation in the forest land that participants had not chosen for enrollment in their

2021 PSA application (i.e. non-Conafor areas). Our main results are robust to controlling

for this variable, as shown in Table A.2.
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5.4 Remote sensing measure of deforestation

We trained a random forest algorithm to automatically classify each pixel in satellite

imagery of our study area as forest or not. We used the algorithm, applied to imagery

from the end of the PES contract period, to determine if individuals complied with the

contract. We also use the model output to construct the study’s main outcome variable:

deforestation. We use the sample of pixels with forest at baseline, according to the

model, and the outcome variable is an indicator that equals 1 if the pixel was no longer

forest cover at endline, according to the model.

We use satellite imagery from Planet-NICFI (Norway’s International Climate and

Forest Initiative). These images provide a monthly cloud-free image with a resolution

of pixels 4.59m x 4.56m (the date(s) within the month for the specific images is not

provided). We then created the smallest rectangle that contains all the polygons of

individuals participating in the study. We divided the rectangle into regions of 100 x

100 pixels. Each region is divided randomly into training (56.25%), validation (18.75%)

and testing data (25%). Where the yellow, pink and purple squares in Figure 2 represent

the training, validation and testing data, respectively.

For the training data, we use hand-classified data from baseline that labeled whether

each pixel in study participants’ land was forest or not. Specifically, we use the polygons

collected in the baseline survey, extract the imagery, and visually inspect each pixel,

classifying it as forest or no forest. This manual labeling is what we used to determine

the forest land to enroll in the PES contracts for both treatment and control groups.

For each pixel, there are four variables that are used as predictors: the red band,

the green band, the blue band and the infrared band. We tried several models and

parameters and the best-performing was a random forest using 100 trees, a maximum

depth of each tree of 50 (i.e., maximum 50 binary splits of the data in each decision tree),

and two variables at each node (mtry parameter). The receiver operating characteristic
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Figure 2

(a) (b)

Notes: The study area on the left is divided into 4.59km x 4.56km regions. Then each region is
randomly divided into yellow, pink and purple squares representing the training, validation and
testing data respectively, as shown on the right.

(ROC) curve of the model with the performance of the model is shown in Figure 3.

Figure 3

Notes: The receiver operating characteristic (ROC) curve of the model plots the true positive rate
(TPR) against the false positive rate for different cutoffs. The TPR is the proportion of forest pixels
accurately classified as forest. The FPR is the fraction of no forest pixels incorrectly classified as
forest. As we lower the cutoff we increase the TPR and the FPR.

Figure 4 presents two examples of the satellite imagery and the predictions of the
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model.

In the regression analysis, we define a pixel as deforested if the model predicts it

to be deforested in that month and the subsequent month (to reduce the rate of false

positives).

5.5 Regression model

As treatment was randomized, we can estimate the effect of the program by comparing

outcomes in the treatment and control groups. We do this by estimating the regression

model shown in equation (1):

ypie = βTreatmenti + αe + εpie (1)

where ypie is the outcome (deforested) for a pixel p owned by individual i, residing

in ejido e. Treatmenti is a binary variable that equals 1 if individual i was offered the

full-enrollment contract. Finally, αe are ejido fixed effects, the stratification unit for the

treatment. When each observation is a pixel, we cluster standard errors at the indi-

vidual level, allowing for arbitrary non-independence of the error term εpie, within an

individual’s pixels.

We can also conduct the deforestation analysis at the individual level and study

heterogeneity by forest at baseline.

yie = β1Treatmenti + β2Treatmenti × Zi + β3Zi + αe + εi (2)

where yie is deforestation of individual i, belonging to ejido e. And Zi is a characteristic

of individual i, for example whether individual had a large area of forest at baseline

(above the median). εi is the error term. We allow for heteroskedasticity-robust standard
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errors.

5.6 Cost-effectiveness calculation

Prior research estimates that Conafor’s PES schemes reduce deforestation, relative to

areas with no payment, by between 12 and 14.7% over a 6-year period [39]. Using the

midpoint of the annualized estimates, we assume that standard PES led to 2.2% less

enrolled land being deforested in a year. To convert this effect on enrolled forest to

the effect on total forest, we use the fact that 49% of forest was enrolled in our sample,

yielding an effect size of 1.1%.

To convert reductions in deforestation rates to hectares of averted deforestation, note

that study participants in the control group had 660 hectares of forest at baseline, and

the treatment group had 968 hectares. This implies that full-enrollment PES averted 62.9

hectares of deforestation, and standard PES averted 7.3 hectares.

The payments to enrollees in standard PES totaled MX$313,400, and the payments

in full-enrollment PES were MX$591,000. Using an exchange rate of US$1 = MX$20.036,

this implies that the cost to avert a hectare of deforestation with full-enrollment PES was

US$469, and the cost for standard PES was US$2,143. Taking the ratio of these numbers,

full-enrollment PES was 4.6 times as cost-effective.

To calculate the cost per averted metric ton of CO2 emissions, we incorporate the

estimate that each hectare of forest in our study area stores the equivalent of 550 metric

tons of CO2 [46]. Thus, for full-enrollment PES, the cost to avert (delay) a metric ton of

CO2 emissions is US$0.85.

To benchmark the PES program against other ways of mitigating climate change, it

is useful to convert the delayed deforestation to the equivalent permanent avoidance of

emissions. We assume that after the program ends, landowners revert to their business-

as-usual deforestation without PES. This maps to 15.1% of the baseline forest area being
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cleared each year – the standard PES mean deforestation rate in our sample is 14%

(see Table 1, column 1), and above we laid out our assumption that this represents a

reduction of 1.1% compared to the no-PES scenario. Without PES, if landowners deforest

15.1% of the baseline area each year, their remaining forest would be depleted 6.6 years

after the baseline period of our study (1/0.151). At that point, both PES groups have

additional forest left that they would then clear, we assume. Thus, the forest area that

was conserved because of the program remains intact for an extra 6.6 years.

To value this delay in deforestation, we assume a discount rate of 3%. With dis-

counting, damage (i.e., deforestation) that occurs in 6.6 years is 1/(1 + 0.03)6.6, or 82%,

as costly as damage incurred today. Thus, the delay has a value equal to 18% of the

damage (1 − 1/(1 + 0.03)6.6 = 0.18). In other words, delaying a metric ton of emissions

by 6.6 years is 18% as valuable as permanently averting it. Thus, the full-enrollment

PES program’s cost of US$0.85 to delay a metric ton of CO2 emissions is equivalent to a

US$4.72 cost per metric ton of permanently averted CO2 (0.85/0.18 = 4.72).

5.7 Theoretical framework

The predictions about the effects of full-enrollment can be seen more formally through

a stylized model. Consider a landowner i that owns a one-dimensional continuum of

forest parcels, (OL) in Figure 5. The parcels are ordered along the horizontal axis based

on the net benefits of deforesting them, with higher net benefits on the right. Each parcel

j would produce a private benefit bj if deforested, the red line passing through A, B and

C. For simplicity, we assume the cost of deforesting each parcel is identical and equal to

d. The blue line passing through F, A and E is the cost to deforest each parcel.

21



Scenario without PES

Without a PES program, the landowner would deforest all grids with bj > d. That is,

the landowner would deforest the parcels in the line segment NL in Figure 5. The net

benefits to her from this deforestation are represented by the triangle ACE. For the

segment ON, it is in her private interests to conserve this land, even without PES.

Standard PES scenario

Assume now there is a PES program that pays p per enrolled grid. With a traditional PES

program that allows the landowner to choose which grids to enroll, the farmer would

enroll all grids with bi < p + d. These are the parcels on the segment OM. The avoided

deforestation is (NM), and she is also receiving inframarginal payments for parcels (ON)

she would not have deforested anyway.

As long as there is some parcel where bj < d+ p and a landowner can partially enroll

land, in this simple model, she will choose to enroll and comply with PES. There will

be additionality as long as there exist some parcels where d < bj < d + p, which in our

example, is the segment NM.

Full-enrollment PES scenario

Consider now the modified program where the farmer has to enroll all her forest land

(OL). That would require the farmer not deforesting the grids ML that she would not

have chosen to enroll under the standard contract. The avoided deforestation is (NL).

She is also receiving inframarginal payments for the land she would not have deforested

anyway (ON). A first prediction is that avoided deforestation is higher for someone who

complies with full-enrollment PES than with standard PES. A second prediction is that

this extra avoided deforestation is on the parcels that the landowner would exclude from
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the PES program if given the choice.

A third prediction is that the likelihood of taking up and complying with the PES

program is weakly lower under full enrollment. As explained above, with our assump-

tions, everyone complies with standard PES. With full-enrollment PES, the landowner

will comply if the rectangle of total PES payments (DEFG) is larger than the area of net

benefits of deforestation (ACE) without PES. This condition may or may not hold. To see

this, note that as p → 0, the area of DEFG becomes 0, and when p is high enough that

the line GBD intersects or is above the point C then the triangle ACE that represents the

net benefits of deforesting is a strict subset of the payments rectangle DEFG.
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Figure 4

(a) (b)

(c) (d)

Notes: Panels (a) and (c) show raw satellite imagery of examples of land owned by study partic-
ipants. Panels (b) and (d) show the corresponding remote sensing model output classifying the
pixel’s likelihood of being forest, on a scale from 0 to 1.24



Figure 5: Theoretical avoided deforestation with modified contract

0

bi
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Notes: Theoretical representation of the standard PES program and the modified full-enrollment PES
assessed in this study. The red line passing through A, B and C represents the benefits of deforesting each
parcel. The blue line passing through F, A and E represents the private costs of deforesting the parcel.
Consequently, without PES the farmer would deforest NL. With standard PES that pays p, the landowner
enrolls OM and deforests the segment ML. With the modified PES, she will need to enroll and preserve
ML to be in compliance. She will choose to comply if the rectangle of total PES payments (DEFG) is larger
than the area of net benefits of deforestation (ACE) she would enjoy without PES.
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6 Data availability

As required by the Research Ethics Committee at Université du Québec en Outaouais,

the authors are not allowed to publicly archive survey or georeferenced land data from

the studied communities due to the small size of the communities and possibility that

individuals’ identities could be inferred from the data.

7 Code availability

Code is available in this link https://dataverse.harvard.edu/dataset.xhtml?persistentId=

doi:10.7910/DVN/KYE3VT
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canos, DF, México, 2015).

43. Fernández-Montes de Oca, A., Gallardo-Cruz, A. & Martı́nez, M. in Conservación y

Desarrollo Sustentable en la Selva Lacandona: 25 años de actividades y experiencias (eds

Carabias, J., De la Maza, J. & Cadena, R.) 61–67 (Natura y Ecosistemas Mexicanos,
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A Appendix

Table A.1: Compliance

Variable Total
Met PES
condi-
tions

Did not
meet

condi-
tions

Standardized
diff

(1) (2) (3) (4)

Male 0.619
[0.490]

0.596
[0.495]

0.727
(0.467) -0.267

Years of school completed 7.113
[4.086]

7.137
[4.074]

7.000
(4.336) 0.034

Household expenditure in last month (Ln) 8.159
[0.757]

8.151
[0.821]

8.200
(0.329) -0.065

Has been or is enrolled in a PSA program 0.613
[0.491]

0.667
[0.476]

0.364
(0.505) 0.617

Attrition 0.079
[0.272]

0.038
[0.194]

0.273
(0.467) -0.864

Land area across all plots (hectares) 42.480
[20.815]

41.641
[22.010]

46.445
(13.951) -0.231

Distance to road (minutes) 15.590
[14.675]

15.800
[15.613]

14.599
(9.527) 0.082

Previous def. % Conafor area 0.007
[0.018]

0.004
[0.012]

0.019
(0.033) -0.833

Previous def. % Non- Conafor area 0.219
[0.195]

0.207
[0.181]

0.280
(0.248) -0.374

Primary forest area total across all plots (hectares) 19.063
[14.061]

19.221
[14.694]

18.318
(11.132) 0.064

Number of observations 63 52 11

Notes: for each variable, each row presents the mean and below the standard deviation in parentheses.
Column 1 presents statistics for the whole sample, column 2 for the individuals who complied with the
PES contract conditions, and column 3 for the individuals who did not comply. Column 4 presents the
standardized difference. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.2: Robustness: Controlling for past deforestation

Deforestation May 2021 - August 2022

Property area Conafor area Non-Conafor
area

(1) (2) (3)

Treat -0.046 -0.003 -0.107
(0.019)∗∗ (0.005) (0.036)∗∗∗

Control mean 0.140 0.014 0.288
N 777902 380801 397101

Notes: This table repeats the main specification, reported in Table 1, but adding a control variable for past
deforestation. Each observation is a 4.77 m by 4.77 m pixel within the landholding of a study participant,
that was forest-covered at baseline. All regressions include ejido fixed effects. Robust standard errors are
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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